Answer:
$0 < p ≤ $25
Explanation:
We know that coach Rivas can spend up to $750 on 30 swimsuits.
This means that the maximum cost that the coach can afford to pay is $750, then if the cost for the 30 swimsuits is C, we have the inequality:
C ≤ $750
Now, if each swimsuit costs p, then 30 of them costs 30 times p, then the cost of the swimsuits is:
C = 30*p
Then we have the inequality:
30*p ≤ $750.
To find the possible values of p, we just need to isolate p in one side of the inequality.
So we can divide both sides by 30 to get:
(30*p)/30 ≤ $750/30
p ≤ $25
And we also should add the restriction:
$0 < p ≤ $25
Because a swimsuit can not cost 0 dollars or less than that.
Then the inequality that represents the possible values of p is:
$0 < p ≤ $25