28.3k views
1 vote
One month Jose rented 5 movies and 3 video games for a total of $34. The next month he rented 2 movies and 12 video games for a total of $73. Find the rental cost for each movie and each video game.

User Helospark
by
3.5k points

1 Answer

4 votes

EXPLANATION

Let's see the facts:

One month:

Rented movies = 5

Rented video games = 3

Total = $34

Next month:

Rented movies = 2

Rented video games = 12

Total = $73

Let's call x to the rental cost for each movie and y to the rental cost for each game, representing the given data on a system of equations give us the following expressions:

(1) 5x + 3y = 34

(2) 2x + 12y = 73

Now, we need to solve this system of equations:

Isolate x for 5x + 3y = 34:


\mathrm{Subtract\: }3y\mathrm{\: from\: both\: sides}
5x+3y-3y=34-3y

Simplify:


5x=34-3y
\mathrm{Divide\: both\: sides\: by\: }5
(5x)/(5)=(34)/(5)-(3y)/(5)
Simplify\colon
x=(34-3y)/(5)
\mathrm{Substitute\: }x=(34-3y)/(5)
\begin{bmatrix}2\cdot(34-3y)/(5)+12y=73\end{bmatrix}
Simplify\colon
\begin{bmatrix}(68+54y)/(5)=73\end{bmatrix}
\mathrm{Multiply\: both\: sides\: by\: }5
(5\left(68+54y\right))/(5)=73\cdot\: 5
\text{Simplify:}
68+54y=365
\mathrm{Subtract\: }68\mathrm{\: from\: both\: sides}
68+54y-68=365-68
Simplify\colon
54y=297
\mathrm{Divide\: both\: sides\: by\: }54
(54y)/(54)=(297)/(54)
Simplify\colon
y=(11)/(2)
\mathrm{For\: }x=(34-3y)/(5)
\mathrm{Substitute\: }y=(11)/(2)
x=(34-3\cdot(11)/(2))/(5)
x=(34-(33)/(2))/(5)
x=((35)/(2))/(5)
x=(35)/(2\cdot\:5)
x=(35)/(10)
\mathrm{Cancel\: the\: common\: factor\colon}\: 5
x=(7)/(2)
\mathrm{The\: solutions\: to\: the\: system\: of\: equations\: are\colon}
x=(7)/(2),\: y=(11)/(2)

Now, as x=rental cost for each movie and y= rental cost for each video game, we can conclude:

Rental cost for each movie = $3.5

Rental cost for each video game = $5.5

User Monroecheeseman
by
3.3k points