Given the following equation:
![-5\mleft(-x-4\mright)-3x-5=13](https://img.qammunity.org/2023/formulas/mathematics/high-school/ig84ag37f5nk5ssfgarmns2lqe8sc7ftcz.png)
You can solve for the variable "x" by following the steps shown below:
Step 1. Apply the Distributive property by multiplying eact term inside the parentheses by -5:
![\begin{gathered} (-5)(-x)-(-5)(4)-3x-5=13 \\ 5x+20-3x-5=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ej703w9s3wqzz5tavstpg93e59j2io8nh0.png)
Step 2. Add the like terms on the left side of the equation:
![2x+15=13](https://img.qammunity.org/2023/formulas/mathematics/college/zdmlgwncg27ady1bfuv27f5b45g7bjm8q9.png)
Step 3. Apply the Substraction property of equality by subtracting 15 from both sides of the equation:
![\begin{gathered} 2x+15-(15)=13-(15) \\ 2x=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/te0whzpsc97cucgovja2jiqxnm9do7n5ql.png)
Step 4. Finally, apply the Division property of equality by dividing both sides of the equation by 2:
![\begin{gathered} (2x)/(2)=(-2)/(2) \\ \\ x=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b6cqxl3yk3t204i9vz6pab8473ojt1suko.png)
The answer is:
![x=-1](https://img.qammunity.org/2023/formulas/mathematics/college/di7tgv2dgty5ck1t8uxuokptc8rphbkzsi.png)
Did you understand?