124k views
2 votes
Factor:j) x(x+2) + y (x + 2) - 5(x + 2)k) 5y2 - 10y3l) ax + ay + az

1 Answer

3 votes

Given:


x\left(x+2\right)+y(x+2)-5\left(x+2\right)

Required:

We need to factorize the given expressions.

Step-by-step explanation:


x\left(x+2\right)+y(x+2)-5\left(x+2\right)

The common multiple in all terms is (x+2).

Take out the common term (x+2).


x\left(x+2\right)+y(x+2)-5\lparen x+2)=(x+2)(x+y-5)

Final answer:


\begin{equation*} (x+2)(x+y-5) \end{equation*}

K)

Given:


5y^2-10y^3

Step-by-step explanation:

The given expression can be written as follows.


5y^2-10y^3=5y^2-5*2* y^2* y


5y^2-10y^3=5y^2-5y^2*2y
\text{ The common multiple in all terms is }5y^2.
\text{ Take out the common term }5y^2.


5y^2-10y^3=5y^2(1-2y)

Final answer:


5y^2(1-2y)

l)

Given:


ax+ay+az

Step-by-step explanation:


\text{ The common multiple in all terms is }a.


\text{ Take out the common term }a.


ax+ay+az=a(x+y+z)

Final answer:


a(x+y+z)

User Iban
by
3.5k points