Given:
Required:
To find the total surface area of the prism.
Step-by-step explanation:
The total surface area of the prism is given by the formula:
![A=2* base\text{ area+Area of the rectangle}](https://img.qammunity.org/2023/formulas/mathematics/college/p7kurwm8pjl8qgxsrxymqnklv3bt0mdcvq.png)
Area of the base triangle
![\begin{gathered} =(1)/(2)* base* height \\ =(1)/(2)*6*8 \\ =(48)/(2) \\ =24\text{ cm}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kcis7d1ma2ubhea10g2d25pvf6ir8y6m0e.png)
To find the width of the rectangle we will use the Pythagoras theorem.
![\begin{gathered} width=√((8)^2+(6)^2) \\ width=√(64+36) \\ width=√(100) \\ width=10\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x13yb04qdegi8cbi06ohmaar9c81ec2v1k.png)
Area of the rectangle
![\begin{gathered} =length* breadth \\ =12*10 \\ =120cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yqi3xheqptqixd2uw5nqxe66pks2nknsib.png)
Thus the area of the prism
![\begin{gathered} =2*24+120 \\ =48+120 \\ =168\text{ cm}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8th4n7k9hr7m9t49ms7bhpixskzazfb11e.png)
Final Answer: