Given the expression:
![√(4x^2)\cdot√(20x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/c71x1y0ci836a9i7rjt97y6h514jrs4vz8.png)
You can simplify each Radical as follows, in order to find an equivalent expression:
1. If you decompose the coefficient 4 and the coefficient 20 into their Prime Factors, you get:
![\begin{gathered} 4=2\cdot2=2^2 \\ \\ 20=2\cdot2\cdot5=2^2\cdot5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vw8oeop0mvutqzu06eo3kxgata6vd7t11v.png)
Rewrite the Radicands:
![=√(2^2x^2)\cdot√(2^25^2x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/b2c7jlvlapanqljxu4w0v2d4mt91iauufm.png)
2. Apply this Property for Radicals:
![\sqrt[n]{b^n}=b](https://img.qammunity.org/2023/formulas/mathematics/college/qrubqb7fdg6o0e5cfoz08o38dwzyw0xkzu.png)
Then, you get:
![\begin{gathered} =2x\cdot2x\cdot√(5) \\ \\ =4x^2√(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/48owy83qeswzccw0am09jfx8zp3cevldmw.png)
Hence, the answer is: Option A.