The form of the exponential function is
![y=a(b)^x](https://img.qammunity.org/2023/formulas/mathematics/college/x4kto8751eypenmr0i3prbmrtznyb1ero8.png)
Where a is the value of y at x = 0
b is the base of the exponential function
Let us use 2 points from the table to find a and b
∵ At x = 0, y = 4
∵ a is the value of y at x = 0
∴ a = 4
Substitute it in the form of the function
![f(x)=4(b)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7e910q2jr0gu4noz7spisogkr8ex6sr55.png)
Now let us use the point (-1, 4/3)
![\because f(-1)=(4)/(3);x=-1\text{and y = }(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ykga11vsfrleli02lh9351hrha379tu9jd.png)
![(4)/(3)=4(b)^(-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/jakbzajpnqzbv7ouoz2pnp27o2zt9ggpou.png)
Divide both sides by 4
![\begin{gathered} ((4)/(3))/(4)=(4b^(-1))/(4) \\ (1)/(3)=b^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdqvfovsurrpnci9i0j8qmj0gilm5607xo.png)
To change the power of b to +1, reciprocal 1/3
![\begin{gathered} \because(1)/(3)=(1)/(b) \\ \therefore b=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nmg1lek35tayb8gj9d15ylh8ep3imb1x16.png)
The function of the table is
![f(x)=4(3)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/t9jgo0mspdbhkd65vutv25479e7glnxv33.png)
The answer is D