ANSWER: ⇒ 4n⁴ - 6n³ + 7n² - 9
Simplify or expand:
3n²(5n² - 2n + 1) + (4n² - 11n⁴ - 9)
Apply the Distributive Property:
3n² × 5n² - 3n² × 2n + 3n² + (4n² - 11n⁴ - 9)
Multiply the monomials:
15n⁴ - 3n² × 2n + 3n² + (4n² - 11n⁴ - 9)
Multiply the monomials:
15n⁴ - 6n³ + 3n² + (4n² - 11n⁴ - 9)
Determine the sign:
15n⁴ - 6n³ + 3n² + 4n² - 11n⁴ - 9
Reorder and gather like terms:
(15n⁴ - 11n⁴) - 6n³ + (3n² + 4n²) - 9
Collect coefficients of like terms:
(15 - 11)n⁴ - 6n³ + (3 + 4)n² - 9
Calculate the sum or difference:
4n⁴ - 6n³ + (3 + 4)n² - 9
Calculate the sum or difference:
4n⁴ - 6n³ + 7n² - 9