We are given that a mass is attached to a string and is spun is in a horizontal circle, this means that the free body diagram of the problem is the following:
We will add the forces in the vertical direction:
![T_y-mg=0](https://img.qammunity.org/2023/formulas/physics/college/ep12fc6gxqlwe56ulw6ssruq59jyfg6eci.png)
The forces add up to zero since there is no acceleration in the vertical direction. Therefore, we can add "mg" to both sides:
![T_y=mg](https://img.qammunity.org/2023/formulas/physics/college/yqpznqnw1u1y94stwi65sgyr8sr3laa36s.png)
Now, The vertical component of the tension can be put in terms of the total tension using the following right triangle:
Therefore, we use the trigonometric function sine:
![\cos x=(T_y)/(T)](https://img.qammunity.org/2023/formulas/physics/college/igbg8s3298wh0ipvshuo2u0vr3gepaem9g.png)
Multiplying both sides by "T"
![T\cos x=T_y](https://img.qammunity.org/2023/formulas/physics/college/2inzx5udqpjkam0x2xn3y9wbk1fzlwz498.png)
Substituting in the sum of vertical forces:
![T\cos x=mg](https://img.qammunity.org/2023/formulas/physics/college/m645w1fve372wcv3yv994xikiqj1plygey.png)
Now, Since the horizontal component of the tension is equivalent to the centripetal force, we have that:
![T_x=ma_r](https://img.qammunity.org/2023/formulas/physics/college/jcqbz8nlz7vtkjtlmkop5i4iy6ad2mtwqc.png)
Where:
![\begin{gathered} r=\text{ radius of the circle} \\ a_r=\text{ radial acceleration} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/38jw915u4j27jez883ebcpla0xym0ejxy5.png)
We can use the trigonometric function cosine to determine the horizontal component of the tension:
![\sin x=(T_x)/(T)](https://img.qammunity.org/2023/formulas/physics/college/h85p4ndvve4fpbo5kgi3557xxvqpa9q9eb.png)
Multiplying both sides by "T":
![T\sin x=T_x](https://img.qammunity.org/2023/formulas/physics/college/db9wcad71mmfaj2e1q6608vbr3ul2b2j5y.png)
Substituting we get:
![T\sin x=ma_r](https://img.qammunity.org/2023/formulas/physics/college/xrhflxdx10pohp00alnofeiidnwsd4m5i4.png)
Now, we divide both equations:
![(T\sin x)/(T\cos x)=(ma_r)/(mg)](https://img.qammunity.org/2023/formulas/physics/college/z28mu2kssjpvql1h0gv4p2napqma6p7j43.png)
Simplifying we get;
![\tan x=(a_r)/(g)](https://img.qammunity.org/2023/formulas/physics/college/mqqohcuqqg31tlwr9vmgso2t6f4x6ilj29.png)
Now, we multiply both sides by "g":
![g\tan x=a_r](https://img.qammunity.org/2023/formulas/physics/college/tdegekt1w06h6y0r7ke9zdjtwhl7cm8okk.png)
Now, in any circular motion, the period "P" is given by:
![P=(2\pi)/(\omega)](https://img.qammunity.org/2023/formulas/physics/college/ewfxd5zfeggkdarylmsfls5fnhwpp2xl1s.png)
Where:
![\begin{gathered} r=\text{ radius} \\ v=\text{ tangential velocity} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3d3c6zwk20pfg8tu5lapc6b6p8qvio0f14.png)
Also, the acceleration is given by:
![a_r=(4\pi^2r)/(P^2)](https://img.qammunity.org/2023/formulas/physics/college/pbavxp1r4rto44y5uxaionzr90eykf2xfn.png)
Substituting the expression for the acceleration we determined before we get:
![g\tan x=(4\pi^2r)/(P^2)](https://img.qammunity.org/2023/formulas/physics/college/dbrf032c4qsunxntpqp9t5vqddtnedeyhz.png)
Substituting the expression for the period:
![g\tan x=(4\pi^2r)/(((2\pi)/(\omega))^2)](https://img.qammunity.org/2023/formulas/physics/college/k5k9tr1juvrkbrgf0v47ydqve0oi4xqyjy.png)
Solving the square:
![g\tan x=(4\pi^2r)/((4\pi^2)/(\omega^2))](https://img.qammunity.org/2023/formulas/physics/college/fhd4x8k8b7m8gkbdlyjuc94nq489dorsb6.png)
Solving the fraction:
![g\tan x=(4\pi^2r\omega^2)/(4\pi^2)](https://img.qammunity.org/2023/formulas/physics/college/cyrpp4knmkolm0tne7o46gqkjinzabfq4h.png)
Simplifying:
![g\tan x=r\omega^2](https://img.qammunity.org/2023/formulas/physics/college/zwi45ei9091u8kx4r4bn0x8iy35zsunbrk.png)
Now, we can put the radius in terms of the length of the spring using the following triangle:
using the function sine we get:
![L\sin x=r](https://img.qammunity.org/2023/formulas/physics/college/o2zkoqbp86x6co9mpd6vhxqk9yabslmddz.png)
Substituting in the previous equation we get:
![g\tan x=L\sin x\omega^2](https://img.qammunity.org/2023/formulas/physics/college/dwsi5kv331hl04z6lqsgjik9o2y1wt7aws.png)
Now, we decompose the tangent:
![(g\sin x)/(\cos x)=L\sin x\omega^2](https://img.qammunity.org/2023/formulas/physics/college/m3yqq7hvv3mo7o5ftwxayjg3bqdd4ki90v.png)
Simplifying:
![(g)/(\cos x)=L\omega^2](https://img.qammunity.org/2023/formulas/physics/college/9katunurojvykkh1mo0czlqhecnohxvggt.png)
Now, we invert both sides:
![(\cos x)/(g)=(1)/(L\omega^2)](https://img.qammunity.org/2023/formulas/physics/college/67qbavdpz94ftidv9ygztg1yusd8xe4mu4.png)
Multiplying both sides by "g" we get:
![\cos x=(g)/(L\omega^2)](https://img.qammunity.org/2023/formulas/physics/college/g2x774y28v601fmeworepb1a4y27ugr006.png)
The angular velocity is the angle divided by time, since it takes 0.644 s to complete one revolution this means that :
![\omega=(2\pi)/(0.644)](https://img.qammunity.org/2023/formulas/physics/college/4u8hp8rex2gb4f7bmkmf2vwu3fe0c442yp.png)
substituting the values:
![\cos x=(9.8)/(1.44((2\pi)/(0.644))^2)](https://img.qammunity.org/2023/formulas/physics/college/3jipw8unpwbnyn1pg60gd31ojczsub714x.png)
Solving the operations:
![\cos x=0.071](https://img.qammunity.org/2023/formulas/physics/college/8y43tzuwtcqld5iaf9eh7k4cyb6qai322g.png)
Now, going back to the sum of forces in the vertical direction:
![T\cos x=mg](https://img.qammunity.org/2023/formulas/physics/college/m645w1fve372wcv3yv994xikiqj1plygey.png)
Dividing both sides by "g":
![(T\cos x)/(g)=m](https://img.qammunity.org/2023/formulas/physics/college/g6f4yegmwg9dwmdn2nfwyhafoyywa3uryq.png)
Substituting the values:
![((2.91)(0.071))/(9.8)=m](https://img.qammunity.org/2023/formulas/physics/college/eri8k7didb1yqd05asevlwe2f2hmpr4jcp.png)
Solving the operations:
![0.021=m](https://img.qammunity.org/2023/formulas/physics/college/9hzdc4mpozk7prt0zlfqznvqai1grhpold.png)
Therefore, the mass of the ball is 0.021 kg.