From the given table, let's find an exponential function to model the data.
To write the exponential function, apply the formula:
![f(x)=ab^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/3k5diysx5sy7f95uj4rv7qzzcqxv9i8wko.png)
Where:
b is the rate of change.
We have:
![f(x)=7=ab^1](https://img.qammunity.org/2023/formulas/mathematics/high-school/vauknd0hsl2tk8nbmnf0ykg5n803yw6erp.png)
Now substitute (7, 522) for the values of x and f(x):
![522=ab^7](https://img.qammunity.org/2023/formulas/mathematics/high-school/b1wuwz97yxvmu13vbhbho6vnianm1xc9v9.png)
Divide both equations to find b:
![\begin{gathered} (ab^7)/(ab^1)=(522)/(7) \\ \\ b^6=74.57 \\ \\ b=2.04 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/492n9bb8f64jyhu8rgd2qqskkqmpa9lmnb.png)
The value of b is 2.04.
To find the value of a, we have:
![f(x)=a(2.04)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/252e8r505c37ukm1ikexoha856y9mpbw3r.png)
Substituet (7, 522) for values of x and f(x):
![\begin{gathered} 522=a(2.04)^7 \\ \\ 522=147.032a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4e6atvy9tu8vmovb3d9cdguxa24z9mxt24.png)
Divide both sides by 147.032a:
![\begin{gathered} (522)/(147.032)=(147.032a)/(147.032) \\ \\ 3.56=a \\ \\ a=3.56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/837csc8mugwtym6u2v7ag5yj65z7aehx3w.png)
Therefore, the exponential function to model the data is:
![f(x)=3.56(2.04)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/rj66ztnrwtzs8z8i13t57xyui6kcb3q96q.png)
ANSWER:
![f(x)=3.56(2.04)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/rj66ztnrwtzs8z8i13t57xyui6kcb3q96q.png)