You have the following expression;
![\sqrt[]{(3)/(6)}](https://img.qammunity.org/2023/formulas/mathematics/college/rwz7059oalrg60q83eo3kvqcs1s6ev6nhu.png)
In order to simplify the previous expression you first simplify the fraction insde the root:
![\sqrt[]{(3)/(6)}=\sqrt[]{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/b9hv07z4ru9fzc06krd1gb35e0us0dhuu4.png)
Next, you use the property that the square root of a fraction is equal to the quotient of the square roots:
![\sqrt[]{(1)/(2)}=\frac{\sqrt[]{1}}{\sqrt[]{2}}=\frac{1}{\sqrt[]{2}}](https://img.qammunity.org/2023/formulas/mathematics/college/j0d1k8u7gqiy3nladezta32g8ndps6v7zm.png)
Then, you multiply both numerator and denominator by √2:
![\frac{1}{\sqrt[]{2}}*\frac{\sqrt[]{2}}{\sqrt[]{2}}=\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/gndo9f381p3lqjfas44xdwv6jv1hncik4m.png)
Hence, the result is:
![\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/a3q00ld786j9i93nwu5rafmawdr9vtghbc.png)