Let's put more details in the given figure to better understand the problem:
It appears that the triangle is an Isosceles Triangle. Because of this, the legs of the triangle should be congruent.
Let's determine the length of its leg using the Sine Function: Let, x = the length of the leg.
![\text{ Sine }\Theta\text{ = }\frac{\text{ Opposite}}{\text{ Hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/rcb6ifm2qzsp5xja2c05941jnswor282f1.png)
![\text{ Sine }45^(\circ)\text{ = }\frac{\text{ x}}{\text{ 1}6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/52oijwfuw1adp4befb5hr15yb7gsq5i9ez.png)
![\text{ (16)Sine }45^(\circ)\text{ = x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mv5pwa7ll4ur75d191uwwvh9656ta3hnws.png)
![\text{ x = (16)Sine }45^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mwefin6r8a9rpcwon58hxxq8y87ys7a4du.png)
![\text{ x = (16)(}\frac{1}{\sqrt[]{2}})\text{ = }\frac{16}{\sqrt[]{2}}\text{ = }\frac{\text{ 16 }\cdot\text{ }\sqrt[]{2}}{\sqrt[]{2}\text{ }\cdot\text{ }\sqrt[]{2}}\text{ = }\frac{16\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6oj8h3o7jf6pbglqnucdzoy9cbtnxidrq9.png)
![\text{ x = 8}\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ev57ibqbej5cvmzpu8lq07hs1deqhonxru.png)
Therefore, the length of its leg is 8√2