53.4k views
2 votes
Find csc, cot0, and sin 0, where is the angle shown in the figure.Give exact values, not decimál approximations.

Find csc, cot0, and sin 0, where is the angle shown in the figure.Give exact values-example-1
User Nakib
by
4.2k points

1 Answer

4 votes

Step-by-step explanation:

Given that:


\begin{gathered} \theta=? \\ Hypotenuse=6 \\ Adjacent=5 \end{gathered}

We will obtain the following trigonometric identities as shown below:


\begin{gathered} csc\theta=(1)/(\sin\theta) \\ \text{Using Pythagoras Theorem, we will obtain the missing side:} \\ a^2=c^2-b^2 \\ a^2=6^2-5^2 \\ a^2=36-25 \\ a^2=11 \\ a=√(11) \\ a=opposite=√(11) \\ \\ \sin\theta=(opposite)/(hypotenuse)=(√(11))/(6) \\ csc\theta=(1)/((√(11))/(6))=(6)/(√(11)) \\ csc\theta=(6)/(√(11)) \end{gathered}

Then,


\begin{gathered} cot\theta=(1)/(\tan\theta) \\ \tan\theta=(opposite)/(adjacent)=(√(11))/(5) \\ cot\theta=(1)/((√(11))/(5)) \\ cot\theta=(5)/(√(11)) \end{gathered}

Then,


\sin\theta=(√(11))/(6)

User Aquiles
by
4.8k points