126k views
0 votes
Use the Properties of Logarithms to rewrite each logarithmic expression in expanded form.

Use the Properties of Logarithms to rewrite each logarithmic expression in expanded-example-1

1 Answer

1 vote

The equation is given to be:


\log _{(1)/(3)}6xy

Recall the logarithm rule:


\log _{(1)/(a)}\mleft(x\mright)=-\log _a\mleft(x\mright)

Therefore, the expression becomes:


\log _{(1)/(3)}6xy=-\log _36xy

Factorize the number 6:


\begin{gathered} 6=2\cdot3 \\ \therefore \\ -\log _36xy=-\log _3(3\cdot2xy) \end{gathered}

Recall the rule of logarithm:


\log _c\mleft(ab\mright)=\log _c\mleft(a\mright)+\log _c\mleft(b\mright)

Thus, the expression becomes:


-\log _3(3\cdot2xy)=-(\log _33+\log _32+\log _3x+\log _3y)

Recall the rule:


\log _aa=1

Hence, the expression simplifies to give:


-(\log _33+\log _32+\log _3x+\log _3y)=-(1+\log _32+\log _3x+\log _3y)

Expanding, we have the answer to be:


\Rightarrow-1-\log _32-\log _3x-\log _3y

User Martin Schimak
by
3.5k points