The equation is given to be:
![\log _{(1)/(3)}6xy](https://img.qammunity.org/2023/formulas/mathematics/college/umnptr1z46s3hqrnt32rkszhv88jfwyod2.png)
Recall the logarithm rule:
![\log _{(1)/(a)}\mleft(x\mright)=-\log _a\mleft(x\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/khdsyrb1ttnzkurf12ca14leveidfpufpn.png)
Therefore, the expression becomes:
![\log _{(1)/(3)}6xy=-\log _36xy](https://img.qammunity.org/2023/formulas/mathematics/college/71hynrs8q9nulskfr7wptzzettdhixzydl.png)
Factorize the number 6:
![\begin{gathered} 6=2\cdot3 \\ \therefore \\ -\log _36xy=-\log _3(3\cdot2xy) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w66tvyjlxc45vzcv7hxwqbddl50te7cocp.png)
Recall the rule of logarithm:
![\log _c\mleft(ab\mright)=\log _c\mleft(a\mright)+\log _c\mleft(b\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/27qavmndqn7syr1hitsg5k93loz0zdntsn.png)
Thus, the expression becomes:
![-\log _3(3\cdot2xy)=-(\log _33+\log _32+\log _3x+\log _3y)](https://img.qammunity.org/2023/formulas/mathematics/college/k4bdcamos1x7hla4dpxdo2q8q6hpghtn5s.png)
Recall the rule:
![\log _aa=1](https://img.qammunity.org/2023/formulas/mathematics/college/d0priuyywd0h2t8if0j6hcovip7mtekdia.png)
Hence, the expression simplifies to give:
![-(\log _33+\log _32+\log _3x+\log _3y)=-(1+\log _32+\log _3x+\log _3y)](https://img.qammunity.org/2023/formulas/mathematics/college/ssqvzxzlyosqixa7qt08vl2cxvmrog1txo.png)
Expanding, we have the answer to be:
![\Rightarrow-1-\log _32-\log _3x-\log _3y](https://img.qammunity.org/2023/formulas/mathematics/college/dt6dm1tjmc1lzegr77diiior5bp73nm52u.png)