The formula of the area of a circle is as follows:
![A=\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/lcgfavc89jro4qntamn2b9gfliomu1jwuf.png)
Since the diameter is twice the radius, we may rewrite the equation as follows:
![A=\pi\mleft(\cfrac{d}{2}\mright)^2](https://img.qammunity.org/2023/formulas/mathematics/college/b5ark0u5svnw1wwcr8zwa96wlbc9vmps7z.png)
where d is the diameter.
Thus, the area of Circle A is as follows:
![\begin{gathered} A_(CircleA)=\pi\mleft(\cfrac{12}{2}\mright)^2 \\ =\pi(6)^2 \\ =\pi(36) \\ \approx(3.14)(36) \\ \approx113.04 \\ \approx113 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6zp3sig4twlgtxvfdqdfvx3thwg9u3mjb9.png)
The area of Circle B is as follows:
![\begin{gathered} A_(CircleB)=\pi\mleft(\cfrac{5}{2}\mright)^2 \\ =\pi(2.5)^2 \\ =\pi(6.25) \\ \approx(3.14)(6.25) \\ \approx19.625 \\ \approx20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/906so3akphvqv4eytlnm4x1ve5x2i995q6.png)
The area of Circle C is as follows:
![\begin{gathered} A_{\text{Circle C}}=\pi\mleft(\cfrac{24.8}{2}\mright)^2 \\ =\pi(12.4)^2 \\ =\pi(153.76) \\ \approx(3.14)(153.76) \\ \approx482.8064 \\ \approx483 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y3juule5apu0ws44r3l6qbf94djal15n7y.png)