Hello!
A) Equation:
![A=P\mleft(1+(r)/(n)\mright)^(nt)](https://img.qammunity.org/2023/formulas/mathematics/college/o2p81nfhj3j2wmpeyz7a8fuzi8u87kw4p8.png)
Variables:
• A = amount
,
• P = principal
,
• r = rate
,
• n = number of periods (12 months)
,
• t = time (iwhole or decimals)
B)
• P = $6500
,
• t = 10 years
,
• r = 3.7% = 0.037
Using the information in the formula:
![\begin{gathered} A=6500(1+(0.037)/(12))^(12\cdot10) \\ \\ A=6500\cdot(1.00030833)^(120) \\ A=$\$9,404.92$ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/56fp4g5s2j6lgt3z2xxh1cfmdunzynu3a4.png)
C)
Let's consider the same information as above, just changing the time to 20 years:
![\begin{gathered} A=6500(1+(0.037)/(12))^(12\cdot20) \\ \\ A=6500\cdot(1.00030833)^(240) \\ A=$\$13,608.08$ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zomxpmcwsjnvshiz6k0erpqi3yn71q3qra.png)
Let's calculate the difference:
![\$13,608.08-$\$9,404.92$=\$4203.16](https://img.qammunity.org/2023/formulas/mathematics/college/f3d7cgb925soif8ieqdgdgv5c99x1cm3hp.png)