To determine which of the options best defines the table, we will have to determine the equation of the line that defines the table.
To find the equation of a line
let us select the first two points of the table
![\begin{gathered} \text{when } \\ x=-4,\text{ y=2} \\ \text{when} \\ x=-2,\text{ y=1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aak50wycwhdwe0sqz8eqs9d0zdi8dz9fsj.png)
We can now use the equation of the line formula
![\begin{gathered} (y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1) \\ \\ (y-2)/(x-(-4))=(1-2)/(-2-(-4)) \\ \\ (y-2)/(x+4)=(1-2)/(-2+4) \\ \\ (y-2)/(x+4)=(-1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vgozr9o4p8krnlc6h6fitqi5i4dvgwnmpb.png)
The next step will be
to cross multiply
![y-2=-(1)/(2)(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/7lqv64p27l9nqwdtiof062g51oslditywd.png)
To find the option that conforms to the expression
![\begin{gathered} \text{let us add 5 to both sides} \\ y-2+5=-(1)/(2)(x+4)+5 \\ \\ y+3=-(1)/(2)x-2+5 \\ y+3=-(1)/(2)x+3 \\ \text{This is equivalent to} \\ y+3=-(1)/(2)(x-6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q6qyiebrh3s8yfnzl507dnmudsbam6ft60.png)
ThusThe correct answer is option C