In the given triangle FCE and GCD
angle C is common
as line GD || FE
angle EFC = angle DGC (corresponding angle)
Similarly
Angle CDG = AngleCEF (Corresponding angle)
By Angle Angle similarity, triangle FCE and GCD are similar
From thr properties of similar triangle,
The ratio of corresponding sides of similar triangle are equal
![\begin{gathered} In\text{ }\Delta FCE\text{ \&}\Delta\text{ GCD} \\ (FC)/(GC)=(CE)/(CD)=(EF)/(DG) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bcnyqmluzrrzqx5u97rkzqm1g6igrj9smb.png)
substitute the value: GC = 10, CD = 12, DE = 72
as: CE = CD + DE
CE = 12 + 72
CE = 84
![\begin{gathered} (FC)/(GC)=(CE)/(CD)=(EF)/(DG) \\ (FC)/(10)=(84)/(12)=(EF)/(DG) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/86h13efnphrwv47l0tj7et0dfts4omthtt.png)
For the length CF, simplify first two expression:
![\begin{gathered} (CF)/(10)=(84)/(12) \\ CF=(84*10)/(12) \\ CF=7*10 \\ CF=70 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/99tby3bltv64sbhzs5nei8frygkjvzy9gv.png)
Answer : CF = 70