We need to find the following operation
![T_((-1,2))\circ R_(x-axis)(QRST)](https://img.qammunity.org/2023/formulas/mathematics/college/21vfjentm6pg137gm9y8rhya4r67yylek2.png)
which means that we need to find first the reflection over the x-axis of the figure QRST:
![R_(x-axis)(QRST)](https://img.qammunity.org/2023/formulas/mathematics/college/h6syueog2tsax70anw1ypffysvqmkic164.png)
and then translate the result 1 unit left and 2 units up:
![T_((-1,2))](https://img.qammunity.org/2023/formulas/mathematics/college/jg81zpzrko9vdtf62og26hipdm8jf9zd0m.png)
In this regard, the rule for a reflection over the x-axis is given by
![(x,y)\longrightarrow(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/tlsjtkzhl1nl9js35repoulhywtkphfkrr.png)
Then, by applying the reflection rule, we have that
![\begin{gathered} Q(1,3)\longrightarrow Q^(\prime)(1,-3) \\ R(3,-3)\longrightarrow R^(\prime)(3,3) \\ S(0,-2)\longrightarrow S^(\prime)(0,2) \\ T(-2,1)\longrightarrow T^(\prime)(-2,-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j1bhrf31l14ffml77esko0mb8s3v330wo4.png)
Now, the translation rule for 1 units to the left and 2 units up
![(x,y)\longrightarrow(x-1,\text{ y+2)}](https://img.qammunity.org/2023/formulas/mathematics/college/htouoni0l0icb3wojd5mp0q4vmrzalq4rs.png)
Then, by applyin this rule to the last result, we have
![Q^(\prime)(1,-3)\longrightarrow Q´´(1-1,-3+2)=Q´´(0,-1)](https://img.qammunity.org/2023/formulas/mathematics/college/hk2nf5d9wbo4u3sy2p2k0jzulw2vcid3ih.png)
and
![R^(\prime)(3,3)\longrightarrow R´´(3-1,3+2)=R´´(2,5)](https://img.qammunity.org/2023/formulas/mathematics/college/dxomcdtwcxg1ilu93oluu1mp1r88k5umrv.png)
and
![S^(\prime)(0,2)\longrightarrow S´´(0-1,2+2)=S´´^{}(-1,4)](https://img.qammunity.org/2023/formulas/mathematics/college/5nx2r47c7bmdu3wh9mauczw74gi5g6vec2.png)
and finally,
![T^(\prime)(-2,-1)\longrightarrow T´´^{}(-2-1,-1+2)=T´´(-3,1)](https://img.qammunity.org/2023/formulas/mathematics/college/yslj02l73676ae6bmaixn5uvb56d5zafqj.png)
Therefore, the answer is:
![\begin{gathered} Q´´(0,-1) \\ R´´(2,5) \\ S´´^{}(-1,4) \\ T´´(-3,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iivsc8nksntezbom8fenfi2tjqmjoe1czy.png)