Given:
![x^2+8x\text{ + \_\_\_\_\_}](https://img.qammunity.org/2023/formulas/mathematics/college/faw0cjvfzyt0p3r6h3cyedr1pogvkvixo4.png)
Let's find the number that will make the expression a perfect trinomial.
To find the number, apply the formula:
![\text{new term = (}(b)/(2))^2](https://img.qammunity.org/2023/formulas/mathematics/college/zv47bsfc9g7mdv7i153x49tazs66w5jd00.png)
From the expression:
b = 8
Hence, we have:
![((b)/(2))^2=((8)/(2))^2=(4)^2=16](https://img.qammunity.org/2023/formulas/mathematics/college/c6ci30gvxucqwnwteuvx3d893l33539kfe.png)
Therefore, the number that will make the expression a perfec squaret trinomial is 16 .
Hence, the trinomial is:
![x^2+8x+16](https://img.qammunity.org/2023/formulas/mathematics/high-school/dgzblxhiah6yh2xfc8istm8vybieumstaw.png)
ANSWER:
16