62.0k views
0 votes
How do I find these exact values with the given information and values?

How do I find these exact values with the given information and values?-example-1
User Jaja
by
8.5k points

1 Answer

7 votes

ANSWER:


\begin{gathered} \sin 2x=(12)/(13) \\ \cos 2x=-(5)/(13) \\ \tan 2x=-(12)/(5) \end{gathered}

Explanation:

We know that cotagent is given as follows:


\begin{gathered} \cot x=\frac{\text{ adjacent }}{\text{ opposite}} \\ \text{ therefore} \\ \text{adjacent = 2} \\ \text{ oppoiste = 3} \\ \text{ hypotenuse =}\sqrt[]{2^2+3^2}=\sqrt[]{4+9}=\sqrt[]{13} \end{gathered}

Therefore:

sin 2x:


\begin{gathered} \sin 2x=2\sin x\cdot\cos x \\ \sin x=\frac{\text{ opposite}}{\text{ hypotenuse}}=\frac{3}{\sqrt[]{13}} \\ \cos x=\frac{\text{adjacent}}{\text{hypotenuse}}=\frac{2}{\sqrt[]{13}} \\ \sin 2x=2\sin x\cdot\cos x=2\cdot(3)/(√(13))\cdot(2)/(√(13))=(12)/(13) \end{gathered}

cos 2x:


\begin{gathered} \cos 2x=\cos ^2x-\sin ^2x \\ \sin ^2x=\mleft((3)/(√(13))\mright)^2=(9)/(13) \\ \cos ^2x=\mleft((2)/(√(13))\mright)^2=(4)/(13) \\ \cos 2x=(4)/(13)-(9)/(13)=-(5)/(13) \end{gathered}

tan 2x:


\tan 2x=(\sin 2x)/(\cos 2x)=((12)/(13))/(-(5)/(13))=-(12)/(5)

User Saint
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories