In order to find the direction of the initial velocity, first let's calculate the change in velocity caused by the acceleration:
![\begin{gathered} F=m\cdot a\\ \\ 2655=15.5\cdot a\\ \\ a=171.29\text{ m/s^^b2}\\ \\ \\ \\ \Delta V=a\cdot t\\ \\ \Delta V=171.29\cdot0.05\\ \\ \Delta V=8.5645\text{ m/s} \end{gathered}]()
Now, let's calculate the horizontal and vertical components of the final velocity.
The direction is N45W, therefore the angle is 90° + 45° = 135°:
![\begin{gathered} V_x=V\cdot\cos135°=45\cdot(-(√(2))/(2))=-31.82\text{ m/s}\\ \\ V_y=V\cdot\sin135°=45\cdot(√(2))/(2)=31.82\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ai55lg1wx4lnua6e81c31vrien0gfb0grw.png)
The change in the velocity occurred in north direction, so let's calculate the initial vertical velocity:
![V_(iy)=V_y-\Delta V=31.82-8.5645=23.2555\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/a6do5ukw413a2p09f2b1if9wetvlmwelc6.png)
Now, to calculate the direction, we can use the arc tangent below:
![\theta=\tan^(-1)((V_(iy))/(V_(ix)))=\tan^(-1)((23.2555)/(-31.82))=-36.16°](https://img.qammunity.org/2023/formulas/physics/college/u8flpsyqqu6wc7hxdua4vspglpg41nqdwj.png)
Since the direction is between north and west, we need to add 180° to the result, so the angle will be 143.84°.
This angle is equal to the direction N 53.84° W.