Step 1: Problem
Find E and find F to the nearest degree and find DF to the nearest tenth.
Step 2: Concept
1. Apply sine and cosine formula to find the angle E and F
![\begin{gathered} \sin \theta\text{ = }\frac{opposite}{\text{hypotenuse}} \\ \cos \theta\text{ = }\frac{adjacent}{\text{hypotenuse}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gshysjb3typhn1olbp6mwl1a85hdp468fa.png)
2. Apply Pythagoras theorem to find length DF
![\text{Opposite}^2+Adjacent^2=Hypotenuse^2](https://img.qammunity.org/2023/formulas/mathematics/college/2s79rn40ubmpxa5nt8wo42kgzjjcjyf41y.png)
Step 3:
For angle F
Opposite = 5
Hypotenuse = 5.83
![\begin{gathered} \sin F\text{ = }\frac{Opposite}{\text{Hypotenuse}} \\ \sin F\text{ = }(5)/(5.83) \\ \sin F\text{ = 0.857632} \\ F\text{ = }\sin ^(-1)0.857632 \\ F\text{ = 59.05} \\ F\text{ = 59} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f6li0vbl2w06xrrd3lccgezi30horg5hzb.png)
For angle E
adjacent = 5
hypotenuse = 5.83
![\begin{gathered} \cos E\text{ = }\frac{adjacent}{\text{hypotenuse}} \\ \cos E\text{ = }(5)/(8.83) \\ \cos E\text{ = 0.857632} \\ E\text{ = }\cos ^(-1)0.857632 \\ E\text{ = 30.9} \\ E\text{ = 31} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/agtc02z3bfh8fz6nnaj6zpebum11ukbsk0.png)
Hypotenuse = 5.85 ft
Opposite = 5ft
Adjacent = DF
![\begin{gathered} \text{Opposite}^2+Adjacent^2=Hypotenuse^2 \\ 5^2+DF^2=5.83^2 \\ 25+DF^2\text{ = 33.9889} \\ DF^2\text{ = 33.9889 - 25} \\ DF^2\text{ = 8.9889} \\ DF\text{ = }\sqrt[]{8.9889} \\ DF\text{ = 2.998} \\ DF\text{ = 3.0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/331568pvnit3u09tatn67meiypcntrlo6a.png)
Step 4: Final answer
Angle F = 59
Angle E = 31
Length DF = 3.0