You have the following equation:
![36t^4+33t^2-3=0](https://img.qammunity.org/2023/formulas/mathematics/college/7yu1364uszdpp506hjhkd9e4zy4getd9zj.png)
In order to solve for t, first divide by 3 both sides:
![12t^4+11t^2-1=0](https://img.qammunity.org/2023/formulas/mathematics/college/l8p437y47manxahv5lslhnl9rfd7ayuugt.png)
use the quadratic equation for t^2, as follow:
![\begin{gathered} t^2=\frac{-11\pm\sqrt[]{(11)^2-4(12)(-1)}}{2(12)} \\ t^2=(-11\pm13)/(24) \\ t^2=(-11+13)/(24)=(2)/(24)=(1)/(12) \\ t^2=(-11-13)/(24)=(-24)/(24)=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1x9m9d3f4g3wrrm56u9x07ie6f81eaj1xa.png)
If you only consider real solutions for t, then, you obtain two real solutions from t^2=1/12.
Then, the solutions are:
![t=\frac{1}{\sqrt[]{12}},t=-\frac{1}{\sqrt[]{12}}](https://img.qammunity.org/2023/formulas/mathematics/college/uw2ezc1ce52v67rqae0c1ar7z4u9jakkgq.png)