To factor a quadratic polynomial of the form:
![n^2+bn+c](https://img.qammunity.org/2023/formulas/mathematics/college/r302rn4wg4fp3eg6kfs2svzi8pemy61mol.png)
we need to find to intergers B and C that fulfill the following conditions:
![\begin{gathered} BC=c \\ \text{and} \\ B+C=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uryhp6vzavw9luukturfeddij1pcr4hm35.png)
In the case of the polynomial:
![n^2-4n-32](https://img.qammunity.org/2023/formulas/mathematics/college/nn6pausyllrdlwhu5ri5rei3513km5tter.png)
we notice that b=-4 and c=-32. Then we need to find two numbers that fulfills:
![\begin{gathered} -32=BC \\ -4=B+C \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xzdv8cbhqoka0koq0f78zpf0wwrbqmrj1f.png)
if we choose B=-8 and C=4 we notice that this requierements are fulfill. Once we have this numbers we write the polynomial as:
![n^2-8n+4n-32](https://img.qammunity.org/2023/formulas/mathematics/college/j3y4wn71uudn0ezz8mpnes6ets2mbqld10.png)
and we factor the first two terms and the last two terms by common factors:
![\begin{gathered} n^2-4n-32=n^2-8n+4n-32=n(n-8)+4(n-8) \\ =(n-8)(n+4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nyl0q9r4m2psfb57l0avms1el2n0g6q51h.png)
Therefore:
![n^2-4n-32=(n-8)(n+4)](https://img.qammunity.org/2023/formulas/mathematics/college/68tkwterv3p136nmxdydtfwce1m2e7vtzt.png)