SOLUTION
Write out formula
Where
PMT= Monthly payment
P= Principal
APR= Annual payment rate
n = number of times compounded in a year
![\begin{gathered} P=36,950 \\ \text{APR}=2.5\text{ \%=0.025} \\ n=12 \\ y=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g45ua6piinlj2u4vogcez3uy3ezwpje86j.png)
Substitute the values into the formula
![\text{PMT}=(36950*(0.025)/(12))/((1-(1+(0.025)/(12))^(-5(12)))](https://img.qammunity.org/2023/formulas/mathematics/college/z6nz0r8pju0dv1gxj2hzypnldty8rzcf6h.png)
Simplifying the expression above
![\begin{gathered} \text{PMT}=(76.979)/(1-(1.0021)^(-60)) \\ \\ \text{PMT}=(76.979)/(1-0.8826)=(76.979)/(0.1174)=655.70 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t8a4mdo2zip7b6nzu4sf6qvawneowngxlf.png)
Hence
![\text{PMT}=655.70](https://img.qammunity.org/2023/formulas/mathematics/college/53m1af1zt06bd5sp9u9aa8y5w48bqm27wy.png)
Therefore,
Andre will need to save 655.70monthly to reach his goal