202k views
2 votes
Yea thank I will be in my class now thank goodness

Yea thank I will be in my class now thank goodness-example-1
User Tim Friske
by
4.7k points

1 Answer

3 votes

Solution

- The equation modeling the height of the falling object is:


h(t)=400-39t-157e^(-0.25t)

Question 1:

- To find the velocity of the falling object, we simply differentiate the function with respects to time (t).

- After this, we can find when the velocity of the object is -30ft/s by substituting V = -30 and find the value of t.

- Thus, we have:


\begin{gathered} h(t)=400-39t-157e^(-0.25t) \\ \\ h^(\prime)(t)=(d)/(dt)(h(t))=(d)/(dt)(400-39t-157e^(-0.25t)) \\ \\ h^(\prime)(t)=-39-157(-0.25)e^(-0.25t) \\ \\ h^(\prime)(t)=V(t)=-39+39.25e^(-0.25t) \\ \\ \text{ Now that we have the expression for }V(t),\text{ we can proceed to find when the velocity is -30 by making }V(t)=-30 \\ \\ -30=-39+39.25e^(-0.25t) \\ \text{ Add 39 to both sides} \\ 39.25e^(-0.25t)=39-30=9 \\ \\ \text{ Divide both sides by 39.25} \\ \\ e^(-0.25t)=(9)/(39.25) \\ \\ \text{ Take the natural log of both sides} \\ \\ -0.25t=\ln((9)/(39.25)) \\ \\ \text{ Divide both sides by -0.25} \\ \\ t=-(1)/(0.25)\ln((9)/(39.25)) \\ \\ t=5.890907...\approx5.89s \end{gathered}

- The time is 5.89s

Question 2:

- The height of the object at time t = 5.89s is gotten by substituting this value of time (t) into the equation of the height given to us.

- We have:


\begin{gathered} h(t)=400-39t-157e^(-0.25t) \\ \\ put\text{ }t=5.89 \\ h(t)=400-39(5.89)-157e^(-0.25(5.89)) \\ \\ h(t)=134.2818...\approx134ft\text{ }(\text{ To the nearest foot\rparen} \end{gathered}

- the height is 134 ft

User JHP
by
5.0k points