Given the points:
C = (10, -1) → x = 10; y = -1;
D = (-6, 3) → x = -6; y = 3.
To find the distance CD, follow the steps below.
Step 1: Substitute the values in the distance formula.
![\begin{gathered} d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ d=\sqrt[]{(-6-10_{})^2+(3_{}-(-1))^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b0elygrzztekswzyzrm5npabg2uyz8vd2n.png)
Step 2: Solve the values inside the parentheses.
![\begin{gathered} d=\sqrt[]{(-16)^2+(4)^2} \\ d=\sqrt[]{256+16} \\ d=\sqrt[]{272} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vhjkn97qs8a6regz4sd2amqyokwtilwepo.png)
Step 3: Solve the square root and find d.
![\begin{gathered} d=\sqrt[]{272} \\ d=16.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e683mtwn0hfiwxcrrzlfaaap7bu44xj2jm.png)
Answer: The distance CD is 16.5.