Given:
The parabola equation is,
![f\mleft(x\mright)=-3\mleft(x-3\mright)^2+3](https://img.qammunity.org/2023/formulas/mathematics/college/lnq5z3g4n7n075ahswvhdw09b2ks46lbc3.png)
To find:
domain and range of the graph.
Step-by-step explanation:
Domain:
The domain of a function is the set of input values for which the function is real and defined.
the function here dose not have any undefined points. So,
the domain is,
![-\infty\: Range;<p>The set of values of the dependent variable for which the function is defined.</p><p>for parabola ,</p>[tex]ax^2+bx+c\:]()
with the vertex,
![(x_v,\: y_v)](https://img.qammunity.org/2023/formulas/mathematics/college/gromwuzvockoohojpiflal437r2q61j5vy.png)
![\begin{gathered} if\: a<0\: \text{ the range is,}f\mleft(x\mright)\le\: y_v \\ \text{if }\: a>0\text{ the range is, }f\mleft(x\mright)\ge\: y_v \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y0rb53rkj9327lvi3nd05k9xw73jwa2pzo.png)
then,
![\begin{gathered} a=-3 \\ \text{vertices: (}x_v,\: y_v)=(3,\: 3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g35oqxsmn8of6v3ajfrtsa2rw9rb7u4pcv.png)
hence,
![f\mleft(x\mright)\le\: 3](https://img.qammunity.org/2023/formulas/mathematics/college/h66483mw2idlphpe9osfvj5aiy8zvud6me.png)
The maximum point is (3,3).
Final Answer:
Domain of the parabola is,
![-\infty\: <strong>Range of the parabola is,</strong>[tex]f\mleft(x\mright)\le\: 3](https://img.qammunity.org/2023/formulas/mathematics/college/t50w93n06gas96mjhbhp91wuumxaywuqwb.png)
in interval notation the range is,
![\: \: (-\infty\: ,\: 3\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/4oqt75t3bi47y8a7kppq4nkz5z1oayofj8.png)
the vertex of the parabola is,
![(3,3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4ikloa5kyipn7nv21zbbn0tk06brqsc820.png)