103k views
5 votes
Solve the system using elimination.2x+10y=83x-10y=12

User Eivind
by
7.9k points

1 Answer

2 votes

x=4, y=0

Step-by-step explanation

Step 1

Let


\begin{gathered} 2x+10y=8\text{ Equation (1)} \\ 3x-10y=12\text{ Equation (2)} \end{gathered}

Step 2

add equation (1) and equation(2) to eliminate y


\begin{gathered} 2x+10y=8\text{ } \\ 3x-10y=12\text{ } \\ ---------- \\ 5x+0=20 \\ 5x=20 \\ \text{divide both sides by 5} \\ (5x)/(5)=(20)/(5) \\ x=4 \end{gathered}

Step 3

now, let's find y:

replace the value of x in equation (1) and isolate y


\begin{gathered} 2x+10y=8 \\ 2(4)+10y=8 \\ 8+10y=8 \\ \end{gathered}

now, isolate y


\begin{gathered} 8+10y=8 \\ \text{subtract 8 in both sides} \\ 8+10y-8=8-8 \\ 10y=0 \\ \text{Divide both sides by 10} \\ (10y)/(10)=(0)/(10) \\ y=0 \end{gathered}

so, the answer is


x=4,\text{ y=0}

we can verify


\begin{gathered} 2x+10y=8\text{ Equation (1)} \\ 2(4)+10(0)=8\text{ } \\ 8+0=8 \\ 8=8\text{ true} \\ \text{and} \\ 3x-10y=12\text{ Equation (2)} \\ 3(4)-10(0)=12\text{ } \\ 12-0=12 \\ 12=12\text{ true} \end{gathered}

I hope this helps you

User Thomas Jaunism
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories