88.7k views
2 votes
Factorize the following function 36(3x-2)² - 25(2-x)²

1 Answer

2 votes

The question is given to factorize the expression:


36\mleft(3x-2\mright)^2\: -\: 25\mleft(2-x\mright)^2​

Given that:


\begin{gathered} 36=6^2 \\ 15=5^2 \end{gathered}

Therefore, the expression becomes:


\Rightarrow6^2(3x-2)^2\: -\: 5^2(2-x)^2​

Recall the rule of exponents:


m^x\cdot n^x=(m\cdot n)^x

Hence, the expression can be rewritten to be:


\Rightarrow\lbrack6(3x-2)\rbrack^2\: -\: \lbrack5(2-x)\rbrack^2

Expand the terms in the brackets:


\begin{gathered} 6(3x-2)=18x-12 \\ 5(2-x)=10-5x \end{gathered}

Hence, we have the expression to be:


\Rightarrow(18x-12)^2-(10-5x)^2

Recall the Difference of Two Squares Formula, defined as:


x^2-y^2=(x-y)(x+y)

Hence, we have the expression to be:


(18x-12)^2-(10-5x)^2=\lbrack(18x-12)-(10-5x)\rbrack\cdot\lbrack(18x-12)+(10-5x)\rbrack

Simplifying, we have:


\Rightarrow(18x-12-10+5x)\cdot(18x-12+10-5x)=(23x-22)(13x-2)

ANSWER:


36\mleft(3x-2\mright)^(2)-25\mleft(2-x\mright)^(2)​=(23x-22)(13x-2)

User Grzegorz Herman
by
4.2k points