88.8k views
2 votes
Factorize the following function 36(3x-2)² - 25(2-x)²

1 Answer

2 votes

The question is given to factorize the expression:


36\mleft(3x-2\mright)^2\: -\: 25\mleft(2-x\mright)^2​

Given that:


\begin{gathered} 36=6^2 \\ 15=5^2 \end{gathered}

Therefore, the expression becomes:


\Rightarrow6^2(3x-2)^2\: -\: 5^2(2-x)^2​

Recall the rule of exponents:


m^x\cdot n^x=(m\cdot n)^x

Hence, the expression can be rewritten to be:


\Rightarrow\lbrack6(3x-2)\rbrack^2\: -\: \lbrack5(2-x)\rbrack^2

Expand the terms in the brackets:


\begin{gathered} 6(3x-2)=18x-12 \\ 5(2-x)=10-5x \end{gathered}

Hence, we have the expression to be:


\Rightarrow(18x-12)^2-(10-5x)^2

Recall the Difference of Two Squares Formula, defined as:


x^2-y^2=(x-y)(x+y)

Hence, we have the expression to be:


(18x-12)^2-(10-5x)^2=\lbrack(18x-12)-(10-5x)\rbrack\cdot\lbrack(18x-12)+(10-5x)\rbrack

Simplifying, we have:


\Rightarrow(18x-12-10+5x)\cdot(18x-12+10-5x)=(23x-22)(13x-2)

ANSWER:


36\mleft(3x-2\mright)^(2)-25\mleft(2-x\mright)^(2)​=(23x-22)(13x-2)

User Grzegorz Herman
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories