98,925 views
14 votes
14 votes
Please verify the following trigonometric identities.

1.
(\tan x + \tan y)/(\cot x + \cot y) = \tan x + \tan y

2.
(\sin^3x + \cos^3x)/(\sin x + \cos x) = 1 - \sin x \cos x

3.
\tan((x)/(2)) + \cos x \tan((x)/(2)) = \sin x

User JakeDK
by
3.2k points

1 Answer

23 votes
23 votes

Seems like there is a correction in the first question (RHS is tanx.tany)

(i) For convenience: let tanx = a ; tany = b

Thus, tanx + tany = a + b

Moreover, cotx = 1/tanx = 1/a ; coty = 1/b

Thus,

cotx + coty = 1/a + 1/b = (a + b)/ab

Hence,

=> (tanx + tany)/(cotx + coty)

=> (a + b) / { (a + b)/ab }

=> ab(a + b)/(a + b)

=> ab => tanx.tany , proved.

(ii) For convenience: let sinx = a ; cosx = b

As we know, sin²x + cos²x = 1 => a²+b²=1

=> (a³ + b³)/(a + b)

=> (a + b)(a² + b² - ab) / (a + b)

=> (a² + b² - ab)

=> 1 - ab => 1 - sinx.cosx , proved

(iii): let x/2 = A

=> tan(x/2) + cosx.tan(x/2)

=> tanA + cos2A.tanA

=> tanA [1 + cos2A]

=> tanA (2cos²A) {1+cos2A = 2cos²A}

=> (sinA/cosA) (2cos²A)

=> sinA (2cosA)

=> 2sinAcosA

=> sin2A

=> sin2(x/2)

=> sinx proved

Letting x/2 = A is not mandatory. I did it to decease words*(in a line).

Indentities used:

• sin²A + cos²A = 1

• (a³ + b³) = (a + b)(a² + b² - 1)

• 1 + cosA = 2 cos²(A/2)

• tanA = sinA/cosA.

• 2sinAcosA = sin2A

User Curtis Lusmore
by
2.9k points