We are asked to determine the decay constant of a radioactive element. To do that we will use the following formula:
![A=A_0e^(-kt)](https://img.qammunity.org/2023/formulas/physics/high-school/x1fbc9bw2142ehej6rpk8q0447rmwa0ecx.png)
Where:
![\begin{gathered} A=\text{ quantity of the element} \\ A_0=\text{ initial quantity} \\ k=\text{ decay constant} \\ t=\text{ time} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/l3p15nrzr8izgk5ovyxki85c8p3u8h7mpo.png)
The half time is the time when the quantity of the element is half the initial quantity. Therefore, we have:
![(A_0)/(2)=A_0e^(-kt)](https://img.qammunity.org/2023/formulas/physics/college/vvm715y1a5yxkmx48xl73uus61zdiqfv9z.png)
Now, we cancel out the initial quantitu:
![(1)/(2)=e^(-kt)](https://img.qammunity.org/2023/formulas/physics/college/8zi9ef74ku9vgcxuidxk7xcs3xkatgebh7.png)
Now, we solve for "t". First, we take the natural logarithm to both sides:
![\ln((1)/(2))=-kt](https://img.qammunity.org/2023/formulas/physics/college/v5symp4nqy1tqro7op5ps9uiz2eghf6zxx.png)
Now, we divide both sides by -t:
![-(1)/(t)\ln((1)/(2))=k](https://img.qammunity.org/2023/formulas/physics/college/mwyu30bbkxlwq2dtflflgz3l86uj7kh5ia.png)
Now, we plug in the value of the time:
![-(1)/(0.44day)\ln((1)/(2))=k](https://img.qammunity.org/2023/formulas/physics/college/ako1q9ldrzgf6wwr5aorlhm56ir5fpwzm5.png)
Solving the operations:
![1.575(1)/(day)=k](https://img.qammunity.org/2023/formulas/physics/college/stey14uhvr7b96gt2r14j7ft9wry9jqt44.png)
Therefore, the decay constant is 1.575 1/day.