Answer:
The horizontal distance is 5
Step-by-step explanation:
The zeros of a function f(x) are the values of x which:
![f(x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/pz6iwtpa64in4q7x3xfns8e4krnry8n9er.png)
In this case, we have the function:
![-x^2+x+6](https://img.qammunity.org/2023/formulas/mathematics/college/9nwsnzi27a3p3wgs5b4yytnvm10yfzrxbs.png)
We want to find the zeros:
![-x^2+x+6=0](https://img.qammunity.org/2023/formulas/mathematics/college/md7kpgoea0ltkjtewui476vajuu4v4c8zg.png)
Now, we can use the quadratic formula:
![x_(1,2)=(-1\pm√(1^2-4(-1)6))/(2(-1))](https://img.qammunity.org/2023/formulas/mathematics/college/3yj0691nim2qk1d076xbwdtk26fl74jfb7.png)
![x_(1,2)=(-1\pm√(1+4\cdot6))/(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/snai11bd19afsyjynpcx8auw07hcsuiprm.png)
![x_(1,2)=(1\pm√(1+24))/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/7bc4t5m9zpasr1rkbu0we8c2xnxexke7ix.png)
![x_(1,2)=(1\pm√(25))/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/fdvy4chnsstb72dbruxupo5f4wn0659x2t.png)
![x_(1,2)=(1\pm5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/oxtkou13afh6juva1qi3mw8cet57v787l7.png)
Then:
![\begin{gathered} x_1=(1+5)/(2)=(6)/(2)=3 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/40bmkykdpu043y0ovjz2zultyycqas5tj8.png)
![x_2=(1-5)/(2)=(-4)/(2)=-2](https://img.qammunity.org/2023/formulas/mathematics/college/64vwnqlvi360nk5sol1mebvy4z3l1zlkx6.png)
The two roots are x = -2 and x = 3
To find the distance, we take the absolute value of the difference:
![Distance=|-2-3|=|-5|=5](https://img.qammunity.org/2023/formulas/mathematics/college/5fakezl2a09bkx34p4nxomxlk90tyw9eh0.png)
The distance is 5