We are given the relationship:
![7r+4t=14](https://img.qammunity.org/2023/formulas/mathematics/high-school/trao6kvfabm6pok6is4d115gn8zx3ffa9k.png)
a. It's required to find a relationship where r is a function of t. To do that, we need to solve the equation for r.
Subtract 4t:
![7r=14-4t](https://img.qammunity.org/2023/formulas/mathematics/high-school/lnxu1dkn3odwg6r1asg3ctqslnsi3gq19a.png)
Divide by 7:
![r=(14-4t)/(7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ice33fldkj3z8vdw2fuz9egkymtnfnoiln.png)
b. We use the function found in part a and evaluate it for t=-7:
![\begin{gathered} r=(14-4\cdot(-7))/(7) \\ \text{Operating:} \\ r=(14+28)/(7)=(42)/(7)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ve5azp5k9foc3abgj1wviqkigvwxj6305.png)
Thus, f(-7) = 6
c. Solve f(t) = 18
Again, we use the function from part a and solve the equation:
![(14-4t)/(7)=18](https://img.qammunity.org/2023/formulas/mathematics/high-school/9j6yz8ywkhmw4i852l44zanx03dwghb9fx.png)
Multiplying by 7:
![\begin{gathered} 14-4t=7\cdot18 \\ 14-4t=126 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6jjkulcb49pkddf5bogtinecwb6gvkqw0q.png)
Subtract 14 and then divide by -4:
![\begin{gathered} -4t=126-14 \\ -4t=112 \\ t=(112)/(-4)=-28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/85ke2379niexajogqe1pktus96pj5ebatv.png)
t = -28