Answer:
y = 4.62
x = 2.31
Explanation:
The cosine ratio for 30 degrees gives
![\cos 30^o=(4)/(y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qcduhup1okcq6sj3kcn5y72s57cqvx1sde.png)
multiplying both sides by y gives
![y\cos 30^o=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/rtm4pkxwl78ur2494hc5lp52541bhtpotq.png)
Finally, dividing both sides by cos 30 gives
![y=(4)/(\cos 30^o)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4i476eg77roy5hcd1yozx11wor309uvm65.png)
Since
![\cos 30^o=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/7khvkma586xqcfhzjqm9o8gck9u9tlz2q7.png)
The above gives
![y=\frac{4}{\frac{\sqrt[]{3}}{2}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xrlve5a3f8qzx7j4behss8ifq18b6egdb0.png)
![\boxed{y=\frac{8\sqrt[]{3}}{3}\approx4.62.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qgwim0dprx6cwm8yt8qioad7sdunf9765f.png)
Now we find the value of x.
The tangent ratio for 30 degrees gives
![\tan 30^o=(x)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sryd6nfwpx1yf3nt9hiykezqoaj7zf6kme.png)
multiplying both sides by 4 gives
![x=4\tan 30^o](https://img.qammunity.org/2023/formulas/mathematics/high-school/h6ufe6860ypzumybktg7np5w8e78mpnvi1.png)
Now since
![\tan 30^o=\frac{\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/460eljoop4mnc4hwomlx2flc8nnjzbi64e.png)
the above gives
![x=4\cdot\frac{\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ft4yye6tlvlozzddfki7eljyvsfu2fgcbz.png)
![\boxed{x\approx2.31.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5kfkrps8or1h9no8vp21nh74kavdet51hx.png)
Hence, to summarize
y = 4.62
x = 2.31