Answer:
y = 4.62
x = 2.31
Explanation:
The cosine ratio for 30 degrees gives

multiplying both sides by y gives

Finally, dividing both sides by cos 30 gives

Since
![\cos 30^o=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/7khvkma586xqcfhzjqm9o8gck9u9tlz2q7.png)
The above gives
![y=\frac{4}{\frac{\sqrt[]{3}}{2}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xrlve5a3f8qzx7j4behss8ifq18b6egdb0.png)
![\boxed{y=\frac{8\sqrt[]{3}}{3}\approx4.62.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qgwim0dprx6cwm8yt8qioad7sdunf9765f.png)
Now we find the value of x.
The tangent ratio for 30 degrees gives

multiplying both sides by 4 gives

Now since
![\tan 30^o=\frac{\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/460eljoop4mnc4hwomlx2flc8nnjzbi64e.png)
the above gives
![x=4\cdot\frac{\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ft4yye6tlvlozzddfki7eljyvsfu2fgcbz.png)

Hence, to summarize
y = 4.62
x = 2.31