Given the mass of a radioactive substance after time t days is given by
![m(t)=Ae^(-kt)](https://img.qammunity.org/2023/formulas/mathematics/college/d0wr1xszvjsv6nbxctlo242hzd6c2by2tz.png)
The initial mass of the substance is 120 milligrams, which means m(0)=120. So,
![\begin{gathered} m(0)=120 \\ \Rightarrow Ae^0=120 \\ \Rightarrow A=120 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l1ui7k7vt8vd8rnx91hl844osrdngoe1qx.png)
The mass of the substance is 90 milligrams after 10 days, which means m(10)=90. So,
![\begin{gathered} m(10)=90 \\ \Rightarrow120e^(-10k)=90 \\ \Rightarrow e^(-10k)=(3)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9zxr6glvutcifzm6tmimmbsu2kkocbjhon.png)
Now, take natural logarithm on both the side and use the property
![\ln (e^n)=n](https://img.qammunity.org/2023/formulas/mathematics/college/elye3vnhkpmsvnakxdksvaknuwt2kfcu2g.png)
So, the above equation will become
![\begin{gathered} \ln (e^(-10k))=\ln ((3)/(4)) \\ \Rightarrow-10k=-0.2877 \\ \Rightarrow k=(-0.2877)/(-10) \\ \Rightarrow k=0.02877 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1qivvo5jodjhd61ssg2ri249vxy50w3kmm.png)
Therefore, the relation between the mass of the substance at time t days is given by t
![m(t)=120e^(-0.02877t)](https://img.qammunity.org/2023/formulas/mathematics/college/behhnwg2kymnt259dqkuhma5xxrs6203xr.png)
The mass of the substance after 16 days will be
![m(16)=120e^(-0.02877(16))=120(0.631)=75.729\text{ milligrams}](https://img.qammunity.org/2023/formulas/mathematics/college/xdl0wpzpgykaaapu74rmp2dsufign5yp8v.png)
The day during which the mass of the substance reaches 50 milligrams can be obtained as follows:
![\begin{gathered} m(t)=50 \\ 120e^{\mleft\{-0.02877t\mright\}}=50 \\ \Rightarrow e^(-0.02877t)=(50)/(120) \\ \Rightarrow-0.02877t=\ln ((50)/(120)) \\ \Rightarrow t=(-0.8754)/(-0.02877) \\ \Rightarrow t=30.43\text{ days} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yoqszrc5xkxots6qznmsegm2lzvftdfuie.png)
The graph that shows the relationship between m and t is given below: