Given:
Perimeter of rectangle = 220 inches
Ratio of length to width = 7:3
Use the perimeter of a rectangle formula:
P = 2(L + W)
220 = 2(L + W)
Divide both sides by 2:
![\begin{gathered} (220)/(2)=(2(L+W))/(2) \\ \\ 110=L+W \\ \\ \text{Subtract W from both sides:} \\ 110-W=L+W-W \\ \\ 110-W=L \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7ra96v2amjmpzlh1yjjpxbt4y0hfpwci3r.png)
Take the ratio:
7W : 3L
7W = 3L
Divide both sides by 3:
![(7)/(3)W=L](https://img.qammunity.org/2023/formulas/mathematics/college/erhlbvkkttn0b88rbd8uabz0ap5rjihw5w.png)
Substitute 7/3 W for L in (110 -W = L)
![\begin{gathered} 110-W=(7)/(3)W \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ddf09sfzvmz3nlwf9l742187089b88ida1.png)
Multiply through by 3:
![\begin{gathered} 330-3W=7W \\ \\ 330=7W\text{ + 3W} \\ \\ 330=10W \\ \\ (330)/(10)=W \\ \\ 33=W \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d6zbumgy2vm3drg9z9sef7l061m07s8omw.png)
To find L, we have:
110 - W = L
110 - 33 = L
77 = L
To find the Area, use the formula:
Area = Length x Width
Area = 77 x 33 = 2541 square inches
ANSWER:
2541 square inches