To answer this question we will use the following property of logarithms:
![\ln a^b=b\ln a.](https://img.qammunity.org/2023/formulas/mathematics/high-school/i18gcbpgpwbuexapea9tvpt02dhqe2xqt2.png)
Dividing the given equation by 4 we get:
![(4*8^x)/(4)=(11.48)/(4).](https://img.qammunity.org/2023/formulas/mathematics/high-school/27pqqa2k1i5ccuahh5xs2tgd0de4bjdt8t.png)
Simplifying the above result we get:
![8^x=2.87.](https://img.qammunity.org/2023/formulas/mathematics/high-school/s1n6mifc9w04r7ii1ed8oq5s7js7kj1zol.png)
Applying the natural logarithm we get:
![\ln8^x=\ln2.87.](https://img.qammunity.org/2023/formulas/mathematics/high-school/lvqi7qc4h2dmdyqy1i156eqnj6n1ug1e90.png)
Applying the property of logarithms we get:
![x\ln8=\ln2.87.](https://img.qammunity.org/2023/formulas/mathematics/high-school/3j7mbgikou2hgfmo4ema0qwcwwq60yuzvw.png)
Therefore:
![x=(\ln2.87)/(\ln8)\approx0.51.](https://img.qammunity.org/2023/formulas/mathematics/high-school/oo6kx14kbc6bkl5q955291jnn3h98kp4a7.png)
Answer: Option D.