Given:
The height of the rocket after t second taking off is given by the formula,
![h=-2t^2+2t+12](https://img.qammunity.org/2023/formulas/mathematics/college/stbkcacpz27be491k8zpfe4tw8a4pxi3gn.png)
Required:
We need to find the time when the rocket hit the ground.
Step-by-step explanation:
We know that the greatest height is zero when the rocket hit the ground.
Substitute h =0 in the given equation to find the time when the rocket hit the ground.
![-2t^2+2t+12=0](https://img.qammunity.org/2023/formulas/mathematics/college/14nmuhr8iwepdf6xbczej0u3dt4o8rt4zv.png)
Divide both sides of the equation by (-2).
![-(2t^2)/(-2)+(2t)/(-2)+(12)/(-2)=(0)/(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/aq95262y18nzgn7iufb2cd6ck7htfn5bpg.png)
![t^2-t-6=0](https://img.qammunity.org/2023/formulas/mathematics/college/apb0yfl2mit1y65up6hb4yx31mxktf666j.png)
![Use\text{ }-t=-3t+2t.](https://img.qammunity.org/2023/formulas/mathematics/college/q4kftknmqblrtg6txdp1bzbj7o2qtm5b4f.png)
![t^2-3t+2t-6=0](https://img.qammunity.org/2023/formulas/mathematics/college/33r7trsljhrjdm35gy9inm3o9fr6v3s8rl.png)
Taking out the common term.
![t(t-3)+2(t-3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/x537tjrzrtejufxao6zupud71ea5voxa9p.png)
![(t-3)(t+2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/y2okqhhhisyanlwd5zc7xbdjj547ujv510.png)
![(t-3)=0,(t+2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/ftfvg60ymz6knnmmbgwpl713qbutjjbka5.png)
![t=3\text{ or t=-2.}](https://img.qammunity.org/2023/formulas/mathematics/college/cj5wfysx1w2dr764usbdfbtvama2ulk1jg.png)
The time should not be of negative value.
![t=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/ezng7l9uqlvz8ytysjg03bfv39poyo7ap5.png)