166k views
5 votes
Solve the triangle . a = 12 , b = 22 , C = 95 degrees

Solve the triangle . a = 12 , b = 22 , C = 95 degrees-example-1

1 Answer

4 votes

Step 1:

Apply cosine and sine rules


\begin{gathered} Sin\text{e rule} \\ (a)/(\sin A)\text{ = }(b)/(\sin B)\text{ = }(c)/(\sin C) \\ Co\sin e\text{ rule} \\ c^2=a^2+b^2-2ab\text{ }*\text{ cosC} \end{gathered}

Step 2;

Use the cosine rule to find side c

a = 12, b = 22 , m


\begin{gathered} c^2=12^2+22^2\text{ - 2}*12*22\text{ }*\text{ cos95} \\ c^2\text{ = 144 + 484 - 528}*(-0.087) \\ c^2\text{ = 673.936} \\ c\text{ = }\sqrt[\square]{673.936} \\ c\text{ = 25.96 } \\ \text{c = 26} \end{gathered}

Step 3:

Find angle A and B using the sine rule.


\begin{gathered} (a)/(\sin A)\text{ = }\frac{c}{s\text{inC}} \\ (12)/(\sin A)\text{ = }\frac{26}{s\text{in95}} \\ \sin A\text{ = }\frac{12\text{ }*\text{ sin95}}{26} \\ \sin A\text{ = }\frac{12\text{ }*\text{ 0.99619}}{26} \\ \sin A\text{ = 0.4597821684} \\ A=sin^(-1)(0.4597821684) \\ A\text{ = 27.4} \\ A\text{ }\approx\text{ 27}.6\text{ } \end{gathered}

Final part

Apply sum of angles in a triangle

A + B + C = 180

27.6 + B + 95 = 180

B = 180 - 95 - 27.6

B = 57.4

Final answer

c = 26 , A = 27.6 , B = 57.4 First option is the correct answer

User Moosa Baloch
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories