Answer:
63/65
Explanation:
Step 1
Given that a and b are first-quadrant angles. In addition:
![\begin{gathered} \sin a=(5)/(13) \\ \cos b=(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/deoixwdnl8e6wtvwbd513173v0vzqc5t06.png)
Using the double-angle formula:
![\sin (a+b)=\sin a\cos b+\cos a\sin b](https://img.qammunity.org/2023/formulas/mathematics/college/64okf8tpqqffi25pjhvfp7f8i18e9ffu9e.png)
Step 2
We need to find the values of cos a and sin b.
(i)cos a
From trigonometric ratios:
![\begin{gathered} \sin \theta=\frac{\text{Opposite}}{\text{Hypotenuse}} \\ \sin a=(5)/(13)\implies\text{Opp}=5,\text{Hyp}=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8bwerb1yx03f7en5t2esishdv0nb60cmla.png)
We find the length of the adjacent side using the Pythagorean Theorem.
![\begin{gathered} \text{Hyp}^2=\text{Opp}^2+\text{Adj}^2 \\ 13^2=5^2+\text{Adj}^2 \\ \text{Adj}^2=13^2-5^2=144=12^2 \\ \text{Adj}=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n6wrwxgrioptfosyqj4k3y80hyapgjlz5m.png)
Therefore:
![\begin{gathered} \cos \theta=\frac{\text{Adjacent}}{\text{Hypotenuse}} \\ \cos a=(12)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j5evpgckflikcmuifzy4zhsl6i0u5jc06o.png)
(b) sin b
From trigonometric ratios:
![\begin{gathered} \cos \theta=\frac{\text{Adjacent}}{\text{Hypotenuse}} \\ \cos b=(3)/(5)\implies\text{Adj}=3,\text{Hyp}=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9k1xfjb1ww58dopsci40oz6ayb6ty267k5.png)
We find the length of the opposite side using the Pythagorean Theorem.
![\begin{gathered} \text{Hyp}^2=\text{Opp}^2+\text{Adj}^2 \\ 5^2=\text{Opp}^2+\text{3}^2 \\ \text{Opp}^2=5^2-3^2=25-9=16 \\ \text{Opp}=\sqrt[]{16}=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/buq8meeiypelz7n828e1yihgtd5iqslz06.png)
Therefore:
![\begin{gathered} \sin \theta=\frac{\text{Opposite}}{\text{Hypotenuse}} \\ \sin b=(4)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7911m7urnd9ukl227mpohnfgiw57yx3yuc.png)
Step 3
Substitute the values of cos a and sin b into the double angle formula.
![\begin{gathered} \sin (a+b)=\sin a\cos b+\cos a\sin b \\ =(5)/(13)*(3)/(5)+(12)/(13)*(4)/(5) \\ =(15)/(65)+(48)/(65) \\ =(63)/(65) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jzuetq9oav4bxr8ux6h6d10vafg3nklcph.png)
The value of sin(a+b) is 63/65.