229k views
4 votes
Find the exact value for tan7/8 using half angle identities

User Igelgrun
by
5.2k points

1 Answer

6 votes

Given the function:


\text{ Tan }(7\pi)/(8)

Let's determine the Cosine Equivalent:


\text{Tan}(7\pi)/(8)\text{ =}(Opposite)/(Adjacent)
\text{Opposite = 7}\pi
\text{Hypotenuse = }\sqrt[]{Opposite^2+Adjacent^2}
\text{ = }\sqrt[]{(7\pi)^2\text{ + }8^2}
\text{Hypotenuse = }\sqrt[]{64\text{ + 49}\pi^2}
\text{ Cosine = }(Adjacent)/(Hypotenuse)\text{ = }\frac{8}{\text{ }\sqrt[]{64\text{ + 49}\pi^2}}

Let's determine the Sine Equivalent:


\text{ Sine = }(Opposite)/(Hypotenuse)
\text{ Sine = }\frac{7\pi}{\text{ }\sqrt[]{64\text{ + 49}\pi^2}}

Let's now determine the exact value using half-angle identities:


\text{ Tan }(u)/(2)\text{ = }\frac{1\text{ - Cosu}}{\text{ Sinu}}
=\text{ }\frac{1\text{ - }\frac{8}{\text{ }\sqrt[]{64\text{ + 49}\pi^2}}\text{ }}{\frac{7\pi}{\text{ }\sqrt[]{64\text{ + 49}\pi^2}}}
=\text{ }\frac{-8\text{ + }\sqrt[]{64+49\pi^2}}{7\pi}
\text{ = 0.70033092876 }\approx\text{ 0.70}

User Asselin
by
4.8k points