ANSWER
The smaller integer is 4 and the larger integer is 6.
Step-by-step explanation
Let the first integer be x.
Let the second integer be x + 2 (since they are consecutive even numbers)
The sum of their reciprocals is 5/12. That is
![(1)/(x)+(1)/(x+2)=(5)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/6532omq24hl5zstc9fq92jt1ivmfn4qidu.png)
Simplify the left-hand side:
![\begin{gathered} (x+2+x)/(x(x+2))=(5)/(12) \\ \Rightarrow(2x+2)/(x^2+2x)=(5)/(12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wtda8s27k0297gqfum4uslkmslqkp6eap5.png)
Cross-multiply:
![\begin{gathered} 12(2x+2)=5(x^2+2x) \\ 24x+24=5x^2+10x \\ \Rightarrow5x^2+10x-24x-24=0 \\ 5x^2-14x-24=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t1nthde9otdgpf0sjesczj106yjh0pknqc.png)
Solve the quadratic equation by quadratic formula:
![\begin{gathered} a=5,b=-14,c=-24\colon \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s4ayci57g2cspqmujeodxygp25v4dddexi.png)
![\begin{gathered} x=\frac{14\pm\sqrt[]{(-14)^2-4(5)(-24)}}{2\cdot5} \\ x=\frac{14\pm\sqrt[]{196+480}}{10}=\frac{14\pm\sqrt[]{676}}{10} \\ x=(14\pm26)/(10) \\ \Rightarrow x=(14+26)/(10),x=(14-26)/(10) \\ x=(40)/(10),x=(-12)/(10) \\ x=4,x=-1.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u3w8wyj0toqq08fxz5jvg97359v0usxwy4.png)
Since the number is an even integer, therefore, we have that:
![x=4](https://img.qammunity.org/2023/formulas/mathematics/college/clnezaiwnjqx862gnqh94au9b279p8untt.png)
That is the smaller integer.
Therefore, the larger integer is:
![\begin{gathered} x+2 \\ \Rightarrow4+2 \\ \Rightarrow6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3gqqkdydkqr4vu60w8dssnzhwfz3attjhk.png)
Hence, the smaller integer is 4 and the larger integer is 6.