Question:
Solution:
Step 1: Find the missing interior angle x:
![23+x+90\text{ = 180}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7futcxrf6y9egh0sr04z6kqmfmbxplf0mq.png)
this is equivalent to:
![113+x\text{ = 180}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7465bcfii3uuja79yxldqy7uf4eoh1fxmn.png)
solving for x, we obtain:
![x\text{ = 180-113= 67}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oqo2didu8hbjwnd2h3sq5wqtkfu4jgqlv0.png)
Thus, we obtain the following right-triangle:
Step 2: Apply the proper trigonometric identity:
![\cos (67)=\frac{adjacent\text{ side}}{hypotenuse}=(IJ)/(7.6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zuyficz4q4qd2siz11tdqt66ch64t9obqz.png)
that is:
![\cos (67)=(IJ)/(7.6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/uivuz2suqmaucjqqkr8hhppmozs42nqpix.png)
solving for IJ, we obtain:
![IJ\text{ = 7.6cos(67) = 2.9}\approx3](https://img.qammunity.org/2023/formulas/mathematics/high-school/fdo9e80x74q8uvgdyxjjibvj0wxz066nem.png)
so that, we can conclude that the correct answer (approximate to the nearest tenth) is:
![IJ\text{ = 3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x5b1w4alflicdazzpo0yojejd8zhrf210t.png)