6. A is 60 miles from B. An automobile at A starts for B at the rate of 20 miles an hour at
the same time that an automobile at B starts for A at the rate of 25 miles an hour. How
long will it be before the automobiles meet?
Rate
Time
Distance
Ryan
Castel
Step 1
Assume they are were they meet
Let
Ryan goes from A to B
rate = 20 miles per hour
time = unknow (t), this time is the same for the two automobile
distance1=unknown( x)
Castel goes from B to A
rate2= 25 miles per hour
time= unknown(t)
distance2 =unknown(y)
we also know that distance from A to b is 60 miles, so
![\begin{gathered} \text{distance}1+\text{distance}2=60\text{ miles} \\ x+y=600 \\ y=600-x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zifaiil07doefl8qthq8yxxkt32xk6cm2b.png)
Step 2
make the equations
for Ryan
![\begin{gathered} \text{rate1}=\frac{dis\tan ce}{\text{time}} \\ 20=(x)/(t) \\ t=(x)/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwz9emrshib2iujo5b3vw8g2vnjmpoblna.png)
For Castel
![\begin{gathered} \text{rate}=\text{ }\frac{dis\tan ce}{\text{time}} \\ \text{25}=(y)/(t)=(600-x)/(t) \\ 25\cdot t=600-x \\ t=(600-x)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vwf32g8mnwdyvqy6y4yzzuk44seoqmziyb.png)
Now, the time is the same
![\begin{gathered} t=t \\ (x)/(20)=(600-x)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/97fe3qpa4qqppx9i45kxq46o2lknzi72y6.png)
solve for x
![\begin{gathered} 25x=20(600-x) \\ 25x=12000-20x \\ 25x+20x=12000 \\ 45x=12000 \\ x=(12000)/(45) \\ x=266.66\text{ miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/71i5do4y0jmpory0578x4laihw4zlb2qk6.png)
now, with the value of x, replace it to find t
![\begin{gathered} t=(x)/(20) \\ t=(266.66)/(20) \\ t=13.33\text{ hours} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cg8mrh46pg68msmz665yrjjieje3nan8jn.png)
finally, replace the value of x to find y