Given:
The temperature is
![T=\text{ 5.7}*10^5\text{ K}](https://img.qammunity.org/2023/formulas/physics/college/489ht7bf5jickqw5n1buzgeis0ihsl1z9w.png)
Required: Average kinetic energy
Step-by-step explanation:
The average kinetic energy can be calculated by the formula
![E_k=(3)/(2)k_BT](https://img.qammunity.org/2023/formulas/physics/college/xzsi78c40l65gak1bcgg8v9kglrjygpvkh.png)
Here, the Boltzmann constant is
![k_B=\text{ 1.38}*10^(-23)\text{ J/K}](https://img.qammunity.org/2023/formulas/physics/college/6mnio96imgtyyrv6wqcjfa5j9979f9i7xl.png)
On substituting the values, the average kinetic energy will be
![\begin{gathered} E_k=(3)/(2)k_BT \\ =(3)/(2)*1.38*10^(-23)*5.7*10^5 \\ =1.1799*10^(-17)J \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yueqvuef7lsibdndcpf5ymt929yyli05jp.png)
Final Answer: The average kinetic energy of the helium atoms is 1.1799 x 10^(-17) J.