The Solution:
Given Polly's grades as:
![70,85,90,88](https://img.qammunity.org/2023/formulas/mathematics/college/phqli56f23qh1eu7kzhllch5lg0yehpcfr.png)
Let the minimum grade she needs to average more than 85 be represented with x.
By formula,
![\text{ Average grade =}\frac{\text{ sum of grades}}{\text{ number of grades}}](https://img.qammunity.org/2023/formulas/mathematics/college/rtfeqi4b7rwscskeg6tdn45h7fp5t4a3mm.png)
In this case,
![\begin{gathered} \text{average grade =85} \\ \text{ sum of grades = 70+85+90+88+x} \\ \text{ number of grades = 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u8fiq6vrwfqds3shh8sd50soe7bar8745d.png)
Substituting, we get the inequality that describes the situation as below:
![\text{ 85 }\leq(70+85+90+88+x)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/bce5p7guqw39oujzkx4lvadb9ofcb4cx0g.png)
The above inequality is the same as
![(70+85+90+88+x)/(5)\ge85](https://img.qammunity.org/2023/formulas/mathematics/college/3q21abad7j97s3f546r7suu1x5y9gxqsfe.png)
Solving the above inequality, we multiply both sides by 5.
![\begin{gathered} (70+85+90+88+x)/(5)*5\ge(85*5) \\ \\ 70+85+90+88+x\ge425 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lhjnis52j9uwhzqi8e5mn3yhuv9pyslcm4.png)
![333+x\ge425](https://img.qammunity.org/2023/formulas/mathematics/college/lbp8v6lj61jx05ee0abmctq8anvgbrsn0i.png)
Collecting the like terms, we get
![\begin{gathered} x\ge425-333 \\ \\ x\ge92 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gmjpedz85ygezsczqgyxc42b40zp07kyh6.png)
Thus, the minimum grade Polly needs is 92.
Therefore, the correct answer is 92.