Given the polynomial:

Where:
-3 is a zero of the polynomial.
Let's express the function as a product of linear factors.
Where:
x = -3
Equate to zero:
x + 3 = 0
Using synthetic division, let's divide the polynomial by -3:
Therefore, we have:

Now,let's solve the expression(quotient) for x using the quadratic formula

Apply the general quadratic equation:

WHere:
a = 1
b = 6
c = 2
Apply the quadratic formula:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
Hence, we have:
![\begin{gathered} x=\frac{-6\pm\sqrt[]{6^2-4(1)(2)}}{2(1)} \\ \\ x=\frac{-6\pm\sqrt[]{36-8}}{2} \\ \\ x=\frac{-6\pm\sqrt[]{28}}{2} \\ \\ x=(-6)/(2)\pm\frac{\sqrt[]{28}}{2} \\ \\ x=-3\pm\frac{\sqrt[]{4\cdot7}}{2} \\ \\ x=-3\pm\frac{2\sqrt[]{7}}{2} \\ \\ x=-3\pm\sqrt[]{7} \\ \\ x=-3-\sqrt[]{7},-3+\sqrt[]{7} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c060bw9jn1vfvzz7o3y8tnkesi36rvshd5.png)
Therefore, the polynomial g(x) as a product of linear factors are:
![g(x)=(x+3)(x+3-\sqrt[]{7})(x+3+\sqrt[]{7})](https://img.qammunity.org/2023/formulas/mathematics/college/xsetpoz5v8bz0zxayopkbwn6mwxafvapwa.png)
ANSWER:
![g(x)=(x+3)(x+3-\sqrt[]{7})(x+3+\sqrt[]{7})](https://img.qammunity.org/2023/formulas/mathematics/college/xsetpoz5v8bz0zxayopkbwn6mwxafvapwa.png)