Given:
There are given the trigonometric function:
![\begin{gathered} \lparen a):f\mleft(x\mright)=-3sin3x \\ \left(b\right):f\mleft(x\mright)=sin((1)/(3)x) \\ (c):f(x)=(1)/(4)cos(0.5x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hptjbf7ktjz0kvlaywg59utvoz0vcpe9f6.png)
Step-by-step explanation:
From the equation (a):
The amplitude is defined when displacement or distance is moved by a point from the equilibrium position.
So,
![\begin{gathered} amplitude:3 \\ period:(2\pi)/(3) \\ range:\left\lbrack-3,3\right\rbrack \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7tbgghnyr63sz7dslbckz2mifz2gxtaqqz.png)
From the function (b):
![\begin{gathered} f\mleft(x\mright)=sin\lparen(1)/(3)x) \\ amplitude:1 \\ period:6\pi \\ range:\left\lbrack-1,1\right\rbrack \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kzvtk8v2fv45ugq6oohwhw12gr3doc36rk.png)
And,
From the function (c):
![\begin{gathered} f\mleft(x\mright)=(1)/(4)cos\left(0.5x\right) \\ amplitude:(1)/(4) \\ period:12.566 \\ range:\left\lbrack-(1)/(4),(1)/(4)\right? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mfedbr44hgdn5m92ym91cg5qj5g4hlptd7.png)